數字信號處理技術的幾種常見應用
“數字信號處理(digital signal processing),是以數字運算方法實現信號變換、濾波、檢測、估值、調制解調以及快速算法等處理的一門學科。數字信號處理具有高精度、高可靠性、可程序控制、可時分復用、便于集成化等優點。
”數字信號處理(digital signal processing),是以數字運算方法實現信號變換、濾波、檢測、估值、調制解調以及快速算法等處理的一門學科。數字信號處理具有高精度、高可靠性、可程序控制、可時分復用、便于集成化等優點。
數字信號處理的應用領域十分廣泛,就其所處理的信號的特點而言,可以分為語音信號處理和圖像信號處理。在通信工程領域中有重要的應用。例如,應用數字濾波器取代通信設備中的模擬濾波器,可以使設備小型化,提高可靠性?焖俑道锶~變換與多相濾波器可以實現多通道濾波器。應用抽樣率變換濾波可以實現調制、解調。應用自適應濾波可以實現信道均衡、回波抵消、天線陣波束形成等。應用非線性濾波可以濾除圖象的噪聲干擾。所以說數字信號處理技術對通信技術的發展有著極為重要的作用。
廣義來說,數字信號處理是研究用數字方法對信號進行分析、變換、濾波、檢測、調制、解調以及快速算法的一門技術學科。但很多人認為:數字信號處理主要是研究有關數字濾波技術、離散變換快速算法和譜分析方法。隨著數字電路與系統技術以及計算機技術的發展,數字信號處理技術也相應地得到發展,其應用領域十分廣泛。
下面介紹幾種數字信號處理技術的常見應用
1、數字濾波器
數字濾波器的實用型式很多,大略可分為有限沖激響應型和無限沖激響應型兩類,可用硬件和軟件兩種方式實現。在硬件實現方式中,它由加法器、乘法器等單元所組成,這與電阻器、電感器和電容器所構成的模擬濾波器完全不同。數字信號處理系統很容易用數字集成電路制成,顯示出體積小、穩定性高、可程控等優點。數字濾波器也可以用軟件實現。軟件實現方法是借助于通用數字計算機按濾波器的設計算法編出程序進行數字濾波計算。
2、傅里葉變換
1965年J.W.庫利和T.W.圖基首先提出離散傅里葉變換的快速算法,簡稱快速傅里葉變換,以FFT表示。自有了快速算法以后,離散傅里葉變換的運算次數大為減少,使數字信號處理的實現成為可能?焖俑道锶~變換還可用來進行一系列有關的快速運算,如相關、褶積、功率譜等運算?焖俑道锶~變換可做成專用設備,也可以通過軟件實現。與快速傅里葉變換相似,其他形式的變換,如沃爾什變換、數論變換等也可有其快速算法。
3、處理系統
無論哪方面的應用,首先須經過信息的獲取或數據的采集過程得到所需的原始信號,如果原始信號是連續信號,還須經過抽樣過程使之成為離散信號,再經過模數轉換得到能為數字計算機或處理器所接受的二進制數字信號。如果所收集到的數據已是離散數據,則只須經過模數轉換即可得到二進制數碼。數字信號處理器的功能是將從原始信號抽樣轉換得來的數字信號按照一D的要求,例如濾波的要求,加以適當的處理,即得到所需的數字輸出信號。經過數模轉換先將數字輸出信號轉換為離散信號,再經過保持電路將離散信號連接起來成為模擬輸出信號,這樣的處理系統適用于各種數字信號處理的應用,只不過專用處理器或所用軟件有所不同而已。
4、語音信號處理
語音信號處理是信號處理中的重要分支之一。它包括的主要方面有:語音的識別,語言的理解,語音的合成,語音的增強,語音的數據壓縮等。各種應用均有其特殊問題。語音識別是將待識別的語音信號的特征參數即時地提取出來,與已知的語音樣本進行匹配,從而判定出待識別語音信號的音素屬性。關于語音識別方法,有統計模式語音識別,結構和語句模式語音識別,利用這些方法可以得到共振峰頻率、音調、嗓音、噪聲等重要參數,語音理解是人和計算機用自然語言對話的理論和技術基礎。語音合成的主要目的是使計算機能夠講話。為此,首先需要研究清楚在發音時語音特征參數隨時間的變化規律,然后利用適當的方法模擬發音的過程,合成為語言。其他有關語言處理問題也各有其特點。語音信號處理是發展智能計算機和智能機器人的基礎,是制造聲碼器的依據。語音信號處理是迅速發展中的一項信號處理技術。
5、圖像信號處理
圖像信號處理的應用已滲透到各個科學技術領域。譬如,圖像處理技術可用于研究粒子的運動軌跡、生物細胞的結構、地貌的狀態、氣象云圖的分析、宇宙星體的構成等。在圖像處理的實際應用中,獲得較大成果的有遙感圖像處理技術、斷層成像技術、計算機視覺技術和景物分析技術等。根據圖像信號處理的應用特點,處理技術大體可分為圖像增強、恢復、分割、識別、編碼和重建等幾個方面。這些處理技術各具特點,且正在迅速發展中。
6、振動信號處理
機械振動信號的分析與處理技術已應用于汽車、飛機、船只、機械設備、房屋建筑、水壩設計等方面的研究和生產中。振動信號處理的基本原理是在測試體上加一激振力,做為輸入信號。在測量點上監測輸出信號。輸出信號與輸入信號之比稱為由測試體所構成的系統的傳遞函數(或稱轉移函數)。根據得到的傳遞函數進行所謂模態參數識別,從而計算出系統的模態剛度、模態阻尼等主要參數。這樣就建立起系統的數學模型。進而可以做出結構的動態優化設計。這些工作均可利用數字處理器來進行。這種分析和處理方法一般稱為模態分析。實質上,它就是信號處理在振動工程中所采用的一種特殊方法。
7、地球物理處理
為了勘探地下深處所儲藏的石油和天然氣以及其他礦藏,通常采用地震勘探方法來探測地層結構和巖性。這種方法的基本原理是在一選定的地點施加人為的激震,如用爆炸方法產生一振動波向地下傳播,遇到地層分界面即產生反射波,在距離振源一D遠的地方放置一列感受器,接收到達地面的反射波。從反射波的延遲時間和強度來判斷地層的深度和結構。感受器所接收到的地震記錄是比較復雜的,需要處理才能進行地質解釋。處理的方法很多,有反褶積法,同態濾波法等,這是一個尚在努力研究的問題。
8、生物醫學處理
信號處理在生物醫學方面主要是用來輔助生物醫學基礎理論的研究和用于診斷檢查和監護。例如,用于細胞學、腦神經學、心血管學、遺傳學等方面的基礎理論研究。人的腦神經系統由約 100億個神經細胞所組成,是一個十分復雜而龐大的信息處理系統。在這個處理系統中,信息的傳輸與處理是并列進行的,并具有特殊的功能,即使系統的某一部分發生障礙,其他部分仍能工作,這是計算機所做不到的。因此,關于人腦的信息處理模型的研究就成為基礎理論研究的重要課題。此外,神經細胞模型的研究,染色體功能的研究等等,都可借助于信號處理的原理和技術來進行。
信號處理用于診斷檢查較為成功的實例,有腦電或心電的自動分析系統、斷層成像技術等。斷層成像技術是診斷學領域中的重大發明。X射線斷層的基本原理是X射線穿過被觀測物體后構成物體的二維投影。接收器接收后,再經過恢復或重建,即可在一系列的不同方位計算出二維投影,經過運算處理即取得實體的斷層信息,從而大屏幕上得到斷層造像。信號處理在生物醫學方面的應用正處于迅速發展階段。
數字信號處理在其他方面還有多種用途,如雷達信號處理、地學信號處理等,它們雖各有其特殊要求,但所利用的基本技術大致相同。在這些方面,數字信號處理技術起著主要的作用。
下一篇:各類電機的故障現象及機理